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Abstract
We analyze the evolution of the effective potential and the particle spectrum
of two-parameter families of non-integrable quantum field theories. These
theories are defined by deformations of conformal minimal models Mm by
using the operators �1,3,�1,2 and �2,1. This present work extends the analysis,
previously done for the universality classes of Ising/tricritical Ising/RSOS
models, to all minimal models. We establish the symmetry and the duality
properties of the various models also identifying the limiting theories that
emerge when m → ∞.

PACS numbers: 02.30.Ik, 11.27.Hf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The aim of this paper is to understand in the easiest and most economical way the evolution of
the effective potentials of particular non-integrable deformations of conformal field theories.
We are interested, in particular, to analyze the relevant features of these effective potentials,
such as the presence of stable and metastable vacua, the evolution of the spectrum of particles,
the occurrence of confinement phenomena, etc. As shown below, quite a large amount of
information can be gathered by using simple tools like the form factor perturbation theory, the
truncated conformal space approach and the exact expressions of vacuum expectation values
of relevant fields along the integrable directions. In the last two subjects—quite crucial for
our analysis—one can easily perceive the unmistakable finger of Alyosha Zamolodchikov, a
theoretical physicist who deeply changed the landscape of two-dimensional models, shaping
it with his deep intuition, his profound knowledge of the field and his remarkable technical
skills. This paper is warmly dedicated to him.
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2. Basic aspects

The comprehension of the universality classes of two-dimensional critical phenomena has been
enormously enlarged in previous decades by the identification of the conformal field theories
of the fixed points [1] and the subsequent discovery of integrable deformations thereof [2]. In
this paper, we focus our attention, in particular, on the unitary conformal minimal models Mm

(m = 3, 4, . . .), with central charge and highest weights of the irreducible representations
given by

c = 1 − 6

m(m + 1)
, hr,s = (r(m + 1) − sm)2 − 1

4m(m + 1)
= hm−r,m+1−s . (2.1)

A one-parameter family of deformed minimal models is defined by the action

A(k,l)±
m = A(CFT)

m ± λ

∫
dz dz̄�k,l(z, z̄), (2.2)

where Am is the action of the conformal minimal model, �r,s is a relevant primary field with
left/right conformal weights � = �̄ = hr,s (with � < 1) and λ > 0 is a dimensional coupling
constant setting the scale of the quantum field theory5. Due to the null-vector structure of their
Verma modules, the one-parameter deformations that generally define an integrable model
away from criticality are those given by the relevant primary fields �1,3,�1,2 and �2,1 [2].
The particle content of each of these integrable theories consists of kinks and/or bound states
thereof, as we will shortly review in the following section.

A two-parameter deformation of the conformal action Am made of any pair of the fields
�1,3,�1,2 and �2,1 leads however to a non-integrable model: in these cases it is impossible
to find a matching of the null-vector structures of their Verma module able to define a set of
conserved densities of higher spins [3]. In this paper we are interested in the analysis of the
evolution of the effective potential by varying the coupling constants of the three non-integrable
off-critical theories defined by

A(1)
m = A(CFT)

m + λ1

∫
dz dz̄�1,3(z, z̄) + μ1

∫
dz dz̄�1,2(z, z̄);

A(2)
m = A(CFT)

m + λ2

∫
dz dz̄�1,3(z, z̄) + μ2

∫
dz dz̄�2,1(z, z̄);

A(3)
m = A(CFT)

m + λ3

∫
dz dz̄�1,2(z, z̄) + μ3

∫
dz dz̄�2,1(z, z̄).

(2.3)

Physically, the effective potential is nothing else than the free energy density as a function
of the order parameter characterizing the vacuum states. Therefore its shape and qualitative
properties can be obtained by studying the vacuum structure. In addition to the qualitative
behavior of this function, we can get quantitative information about the vacuum energy
splittings whenever one of the couplings can be treated by (form factor) perturbation theory.

In the above three classes of non-integrable models, the two perturbations clearly play a
symmetric role and each of them can be regarded as a deformation of the integrable theory
defined by the other: for each theory, there is a dimensionless variable6

χi ≡ λiμ
−(1−�λi

)/(1−�μi
)

i , i = 1, 2, 3 (2.4)

which characterizes two perturbative regimes: the first is obtained in the limit χi → 0, while
the other is reached for χi → ∞ that simply corresponds to swapping the role played by the

5 Note that the sign of the coupling only makes sense after fixing the normalization of the fields �r,s , an issue to
which we will return later. In terms of a mass scale M, λ is expressed as λ ∼ M2(1−hr,s ).
6 In this formula �λi

and �μi
denote the conformal weights of the conjugate fields to the coupling constants λi and

μi , respectively.
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two operators. The analytical control of the variation of the spectrum in both perturbative
limits enables us to obtain interesting information about its evolution in the non-perturbative
intermediate region.

Within the above classes of non-integrable models there are familiar examples of statistical
models in their scaling limit. For instance, choosing m = 3, the action A(1)

3 describes the
full universality class of the Ising model that consists of the model displaced away from its
critical temperature and in the presence of an external magnetic field [4–7]. Note that, for the
symmetry of the conformal weights given in equation (2.1), the universality class of the Ising
model is also described by the action A(3)

3 . For m = 4, the action A(1)
4 describes instead the Z2

spin even sector of the tricritical Ising model, at a temperature different from its critical value
and a non-critical value of the chemical potential of its vacancies [8]. For a general value of
m, the action A(1)

m can be put in correspondence with deformations of the RSOS models and
part of their phase space has been investigated in [9].

A useful insight into the actions above, together with a bookkeeping of the Z2 spin
symmetry of the deformations, is provided by the Landau–Ginzburg (LG) formulation of the
conformal unitary minimal models [10]. In this approach, the conformal action Am can be put
in correspondence with the critical LG action of a scalar field ϕ, odd under the Z2 symmetry
ϕ → −ϕ

Am → A(LG)
m =

∫
dz dz̄

[
1

2
(∂ϕ)2 + ϕ2(m−1)

]
, (2.5)

The primary fields we are interested in are associated with the following normal ordered7

powers of the field ϕ:

�1,3 → : ϕ2(m−2) :

�1,2 → : ϕm−2 :

�2,1 → : ϕm−1 : .

(2.6)

From these relations it follows that �1,2 and �2,1 have always a different Z2 spin parity,
independently of whether m is an even or an odd number. The field �1,3 is always an even Z2

field, while �1,2 (�2,1) is even (odd) only when m is an even number and is an odd (even) Z2

field otherwise. These observations will be useful in our analysis below.
A generic feature of the non-integrable theories (2.3) consists of the confinement of the

kinks of the original integrable models (associated with χi = 0 and χi = ∞), accompanied by
the appearance of new kink states and sequences of neutral bound states. The stability of these
particles varies by varying χi . It is important to estimate the spectrum of all these excitations,
because the lowest kinks and the lowest neutral particles rule, respectively, the asymptotic
behavior of the correlation functions in the topological and non-topological sectors of the
theories. To investigate all these aspects, in the following we will mainly use the form factor
perturbation theory [4, 11], further supported by certain continuity arguments. An explicit
check of the validity of our theoretical conclusions can be provided by the numerical analysis
coming from the truncated conformal space approach (TCSA) [12] that can be implemented
as follows. Consider the Hilbert space

H =
⊕
(r,s)

Vr,s ⊗ V̄r,s , (2.7)

where Vr,s (V̄r,s) denotes the irreducible representation of the left (right) Virasoro algebra
with highest weight hr,s , and the direct sum is modded out by the Z2 symmetry of the Kac

7 Normal ordering is understood with respect to the conformal fusion rules of the primary fields of the model.
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table (2.1) so that every different value of hr,s appears only once. In terms of conformal
field theory, the decomposition (2.7) corresponds to the diagonal modular invariant partition
function on a torus. Putting the theory in finite spatial volume L by using the mapping
z = e

2π
L

(τ−ix) to pass from the conformal z-plane to the cylinder, with x ∼ x + L, we can
define the off-critical Hamiltonian of the systems as

H(i)
m = H(CFT)

m +
∑

k

Vk, (2.8)

where

H(CFT)
m = 2π

L

(
L0 + L̄0 − c

12

)
, Vk = gk

∫ L

0
dx�k, (2.9)

and we have used the shorthand notation �k for the deforming fields and gk for the
corresponding coupling. H(i)

m is an infinite dimensional matrix in the space H (choosing
an orthonormal basis of eigenvectors of L0 and L̄0) and the matrix elements of its various
terms are

〈
|H(0)
m |
 ′〉 = 2π

L

[(
�
 + �̄
 − c

12

)
δ

 ′

]

〈
|Vk|
 ′〉 = gkL
2−2hk

(2π)1−2hk
〈
|�k(1, 1)|
 ′〉δs
,s
′ ,

(2.10)

where the matrix element of the perturbing operator is evaluated on the conformal plane at
z = z̄ = 1. Due to translational invariance, the Hamiltonian is block-diagonal in the conformal
spin s
 = �
 − �̄
 which is related to the spatial momentum: P = 2π

L
s
 . The numerical

diagonalization of H(i)
m is then performed by truncating the conformal basis to a finite number

of states. The matrix form of the off-critical Hamiltonians will be useful in our analysis of the
deformed models.

We plan to do the following: in section 3 we review the one-parameter integrable
deformations of the minimal models, focusing our attention on their particle content. In
section 4 we discuss the evolution of the spectrum of the two-parameter non-integrable
theories, in section 5 we analyze the limiting situations when m → ∞, finally gathering
our conclusions in section 6.

3. One-parameter integrable theories

This section provides an overview of known results on each individual integrable deformation.
We start our analysis with the field �1,3, followed by the fields �1,2 and �2,1. A summary of
the labels of the vacua and the main features of these theory can be found in table 1 at the end
of this section.

3.1. Kinks and vacua of the �1,3 perturbations

Consider the one-parameter deformation defined by the field �1,3. The fusion rules of this
operator with the other primary fields of the theory

[�1,3] × [�r,s] = [�r,s−2] + [�r,s] + [�r,s+2]

imply that �1,3 only couples together subspaces Vr,s ⊗ V̄r,s and Vr ′,s ′ ⊗ V̄r ′,s ′ with r = r ′ and
s − s ′ = 0,±2. Therefore the Hilbert space (2.7) can be split further into m − 1 separate
sectors

Hr =
⊕

1�s�m

r+seven

Vr,s ⊗ V̄r,s , r = 1, . . . , m − 1 (3.1)

4
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...

Figure 1. Adjacency rules and Landau–Ginzburg potential for theories A1,3(−)
m .

Table 1. Summary of the vacuum structure of the integrable models A(1,3)−
m ,A(1,2)±

m and A(2,1)±
m .

Model LG Number of vacua Vacuum index

A(1,3)−
m ϕ2(m−2) m − 1 a = 0, 1

2 , 1, . . . , m−2
2

m−1
2 (m odd) a = 1

2 , 3
2 , . . . , m−2

2A(1,2)+
m ϕm−2

m−2
2 (m even) a = 1

2 , 3
2 , . . . , m−3

2

m−1
2 (m odd) a = 0, 1, . . . , m−3

2A(1,2)−
m ϕ(m−2)

m

2 (m even) a = 0, 1, . . . , m−2
2

m−1
2 , m odd a = 1

2 , 3
2 , . . . , m−2

2A(2,1)+
m ϕm−1

m

2 , m even a = 1
2 , 3

2 , . . . , m−1
2

m+1
2 , m odd a = 0, 1, . . . , m−1

2A(2,1)−
m ϕm−1

m

2 , m even a = 0, 1, . . . , m−2
2

with the matrix elements of the perturbing operator that vanish between Hr and Hr ′ for
r 
= r ′. Choosing appropriate phase conventions for the fields, the theory A1,3(−)

m has a
massive spectrum, while the opposite sign of the perturbing operator leads to a massless flow
whose endpoint is Am−1 in the infrared (L → ∞) limit [13]. The massive theory A1,3(−)

m has
(m − 1) degenerate vacua in infinite volume. Defining the theory on a finite volume of length
L, the degeneracy of the vacua is lifted by tunneling processes and the energy difference are
split exponentially with L

Ek(L) − El(L) ∼ e−μL, (3.2)

where the scale parameter μ is given by μ ∼ λ(m+1)/4, with a dimensionless number in front
as the constant of proportionality. Therefore the finite volume splitting between the vacua is
non-perturbative in the coupling λ.

At the critical point λ = 0, the ground state of the sector Hr is given by the state generated
by the field �r,r , which also gives the ultraviolet (L → 0) limit of the λ < 0 (off-critical)
ground state [14]. Following the standard conventions, we label these vacua as |a〉, where

a = 0, 1/2, . . . , (m − 2)/2.

The elementary excitations are kinks |Kab〉 which interpolate between these ground states.
They do not form bound state and are subjected to the adjacency rules |a − b| = 1

2 . This
situation can be represented pictorially as shown in figure 1, where the continuous curve
depicts a Landau–Ginzburg effective potential with m minima and the arrows indicate the
interpolating kinks. These adjacency rules originate from the standard RSOS restriction based
on a Uq(sl(2)) quantum group symmetry with

q = eiπ m+1
m (3.3)

5
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by associating the representation of spin a to the vacuum |a〉 and putting the kinks in the
spin 1/2 representation. The tensor product rules of the quantum group give the following
adjacency pattern for the kinks:

1
2 ⊗ 0 = 1

2
1
2 ⊗ a = (

a − 1
2

)⊕ (
a + 1

2

)
a > 0.

When q is a root of unity as in (3.3), RSOS restriction implements the truncation of the
Uq(sl(2)) tensor product rules as follows [15]:

a ⊗ b =
min(a+b,2jmax−a−b)⊕

c=|a−b|
c, (3.4)

where jmax = m−2
2 is the maximum spin allowed by the restriction. Note that the truncated

tensor product rules (3.4) have the symmetry

a → jmax − a (3.5)

and, consequently, the adjacency graph is also symmetric.
For later considerations, it is useful to introduce the quantum dimensions Da which satisfy

DaDb =
min(a+b,2jmax−a−b)∑

c=|a−b|
Dc. (3.6)

In the case of a group symmetry, when normalized to unity for the trivial representation, D
are integers giving the dimensions of the group representations. In the case of the truncated
quantum group symmetry (3.6) can be solved to give

Da =
sin
(

(2a+1)π

2(jmax+1)

)
sin
(

π
2(jmax+1)

) (3.7)

which are in general non-integer, reflecting the fact the quantum symmetry algebra underlying
the kink structure is not a group. In the case of A1,3(−)

m , the quantum dimension of the kink
multiplet turns out to be

D1/2 = 2 cos

(
π

m

)
. (3.8)

The physical meaning of this result can be seen as follows. The vacuum energy of the model
in a finite volume R can be calculated using the NLIE description [16]

E(R) = −2M cos

(
π

m

)∫ ∞

−∞
dθ cosh θ e−MR cosh θ , (3.9)

where M is the kink mass. This is exactly the contribution of a massive multiplet of particles
with the degeneracy given by (3.8). For m → ∞D1/2 tends to 2, which is in accordance with
the fact that the RSOS restriction is lifted and the model tends to the sine-Gordon model in
which the solitons form a doublet.

One can also look at the degeneracy of multi-kink states with given momenta, i.e the
number of possible states of the form

Ka1a2(θ1)Ka2a3(θ2) · · · Kanan+1(θn), (3.10)

where Kab(θ) denotes a kink of rapidity θ that connects vacua a and b. This is equivalent to
enumerating the allowed sequences

Sn = {
(a1, . . . , an, an+1) : |ai − ai+1| = 1

2 ; 0 � ai � jmax

}
. (3.11)

It turns out the number of allowed sequences grows as Card(Sn) ∝ Dn
1/2. The S matrix of the

kinks, first obtained in [17], is also invariant under (3.5). For completeness we mention that
the S matrix description of the massless flow A1,3(+)

m is also known [18].

6
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jmax

jmax

...

...

0 1
1
2

2
1

2
3

(a)

jmax jmax

jmax

...

...

0 1 1

1
2

3
2 2

1

(b)

Figure 2. Adjacency rules for the kinks in �1,2 perturbations (jmax = m−2
2 ). (a) m odd and (b) m

even.

3.2. The kink spectrum for �1,2 perturbations

For the models A(1,2)±
m the conjectured S matrix is based on a kink multiplet transforming in

the spin 1 representation of the same Uq(sl(2)) quantum group as specified by (3.3). Using
the fusion rules (3.4)

1 ⊗ 0 = 1

1 ⊗ a = (a − 1) ⊕ a ⊕ (a + 1)

the adjacency graph now consists of two disconnected pieces, one containing the vacua of
integer spin and the other containing the vacua of half-integer spin. There are two separate
possibilities depending on whether m is odd or even, depicted in figure 2 (note that the fusion
rule is again truncated by the RSOS restriction).

The S-matrix of the kinks was obtained in [19] (see also [20] for some corrections in
the formulae for 6j symbols). Apart from physically irrelevant phases (corresponding to
the redefinition of the phases of the vacua), it is again invariant under the symmetry (3.5).
However, there is a crucial difference: for even m it leaves the two disconnected parts of the
adjacency graph invariant, while for odd m it swaps them. We will come back to this point
later in this section. In the meantime let us recall that the full spectrum of the theory depends
on the index m [19]. In the three models of this deformation corresponding to m = 3, 4, 6,
there are only scalar particles: in these cases, in fact, also the kinks behave as scalar particles,
and the spectra are associated with the root systems E8, E7 and E6 respectively, with 8, 7 and
6 particles [2, 21–23]. For m = 5 there are two degenerate kinks and one bound state thereof,
degenerate with them. For m > 6, the spectrum consists instead of two kinks of mass

M, 2M cos

(
π

3(m + 1)

)
and two breathers of mass

2M sin

(
πm

3(m + 1)

)
, 4M sin

(
πm

3(m + 1)

)
sin

(
π(2m + 1)

3(m + 1)

)
.

Their multiplicity depends on the vacuum structure that is examined in more detail below.
Finally, for m → ∞, the �1,2 perturbed model coincides with the usual sine-Gordon model,
for a value of the frequency equal to β2 = 2π . At this value of the frequency, the spectrum
of the sine-Gordon model consists of a breather of mass M degenerate with the kink and the
anti-kink, and an additional breather of mass

√
3M .

7
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Let us now discuss the theories obtained by varying the sign of the coupling. First of
all, in order to choose the sign of the coupling λ, we adopt the following conventions: all
conformal two-point functions are assumed to be normalized as

〈�r,s(z, z̄)�r ′,s ′(0, 0)〉 = δrr ′δss ′

z2hr,s z̄2hr,s

while the conformal three-point couplings

C
(r ′′,s ′′)
(r ′,s ′)(r,s) = 〈r ′′, s ′′|�r ′,s ′(1, 1)|r, s〉 where |r, s〉 = �r,s(0, 0)|0〉

are all real numbers due to unitarity. For m = 2k even, the sign of the perturbing operator
�1,2 can be fixed by demanding that

C
(k,k)

(1,2)(k,k) > 0. (3.12)

This only makes sense because any field redefinition of �k,k drops out. Note that there is no
physical meaning to the sign of �1,2 when m is odd since the sign of every nonzero three-point
couplings allowed by the fusion rules (3.14) given below flips under the field redefinition

�r,s → (−1)s�r,s . (3.13)

Let us start our discussion with the case when m = 2k + 1 is odd. The fusion rules of the
perturbing operator �1,2

[�1,2] × [�r,s] = [�r,s−1] + [�r,s+1] (3.14)

imply that the independent sectors correspond to the following subspaces:

Hr =
m⊕

s=1

Vr,s ⊗ V̄r,s , r = 1, . . . , k. (3.15)

There are then k = (m − 1)/2 ground states, associated with the fields �r,r of the sector Hr .
The adjacency rules in figure 2(a) fit this picture with either the set of integer or half-integer
vacua (the choice is irrelevant due to the symmetry (3.5)). To fix the notation, for m odd we
choose as labels of the vacua the following values:

a = 1

2
,

3

2
, . . . ,

m − 2

2
, λ > 0

a = 0, 1, . . . ,
m − 3

2
, λ < 0.

On the other hand, from the fusion rules (3.14) the perturbing Hamiltonian in sector Hr has
the following form:⎛

⎜⎜⎜⎜⎜⎜⎝

0 f1,2 · · · 0 0

f
†
1,2 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 fm−1,m

0 0 · · · f
†
m−1,m 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where fk,l is the matrix of the operator �1,2 between the modules Vr,k and Vr,l . Therefore it is
obvious that the field redefinition (3.13) corresponds to a change λ → −λ in the Hamiltonian
(2.10). As a result, for m odd, the field theoretic models A(1,2)+

m and A(1,2)−
m are identical.

This matches with the LG identification �1,2 ∼ ϕm−2 that, for m odd, predicts that �1,2 is an
odd field under the Z2 symmetry. It is also plausible that the state vector redefinition induced
by (3.13) is just equivalent to the symmetry (3.5) which swaps the integer and half-integer
vacua. In comparison to the vacuum structure of �1,3 perturbations (where the sectors in

8
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equation (3.1) were all independent), �1,2 induces a direct coupling (first order in λ) between
the subspaces Hr and Hm−r , since it couples, e.g. �r,r and �m−r,m−r = �r,r+1. This explains
why the number of ground states is half the number of those obtained with a �13 perturbation,
where all Hr are uncoupled. Here the coupling between Hr and Hm−r is perturbative in λ and
grows with the volume, with the result to have a finite gap at L → ∞. Note that the field
redefinition (3.13) just swaps the relative sign of the two subspaces Hr and Hm−r .

For even m let us pose m = 2k, with the sectors now given by

Hr =
m⊕

s=1

Vr,s ⊗ V̄r,s , r = 1, . . . , k − 1

Hk =
k⊕

s=1

Vk,s ⊗ V̄k,s .

(3.16)

The field redefinition (3.13) can still be used to establish that the sectors Hr , r = 1, . . . , k − 1
are invariant under λ → −λ. However, due to the Kac table symmetry

[�k,k] = [�k,k+1]

we have

[�1,2] × [�k,k] = [�k,k−1] + [�k,k]

and therefore the Hamiltonian matrix in sector Hk has a block along the diagonal⎛
⎜⎜⎜⎜⎜⎜⎝

0 f1,2 · · · 0 0

f
†
1,2 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 fk−1,k

0 0 · · · f
†
k−1,k fk,k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Due to the presence of fk,k , the spectrum in sector Hk is not invariant under λ → −λ and the
models A(1,2)+

m and A(1,2)−
m are, in principle, different. This is, of course, in agreement with

the LG position �1,2 ∼ ϕm−2 that, for m even, states that �1,2 is even under the Z2 symmetry.
The number of vacua of A(1,2)+

m is equal to (m − 2)/2, while the number of vacua of A(1,2)−
m is

equal to m/2: to fix the notation, in this case we choose as labels of the vacua the following
values:

a = 1

2
,

3

2
, . . . ,

m − 3

2
, λ > 0

a = 0, 1, . . . ,
m − 2

2
, λ < 0.

Such an assignment was previously fixed in [24] based on a conjecture for the exact vacuum
expectation values of local primary fields. A detailed evidence that model A(1,2)+

2k is described
by kink scattering theories built on vacua |a〉 where a takes half-integer values, while A(1,2)−

2k

is associated with the kink scattering theories built on vacua {a〉, with a integer, is given in
appendix A using as example m = 6.

For m even, it is then natural to identify the theoriesA(1,2)±
m with the two vacuum structures

displayed in figure 2(b) and to assume that they are related by duality. This is in agreement
with the known case of m = 4 (the tricritical Ising model) [8, 25] and m = 6 discussed in
appendix A. Note that, although the naive counting of the kinks of the two models A(1,2)±

m

gives different values, the dimensions of their Hilbert space are equal. This comes from taking

9
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into proper account the composition law of the multi-kink states. The quantum dimension of
the kink multiplet in this case is given by

D1 = 1 + 2 cos

(
2π

m

)
(3.17)

which goes to 3 when m → ∞ corresponding to the fact that the unrestricted soliton is a
triplet [19]. Similarly to the case of the �1,2 perturbations the quantum dimension gives the
growth of the degeneracy of multi-kink states.

In finite volume with periodic boundary conditions our previous considerations show
that A(1,2)±

m differ only in the sector Hk (where again m = 2k). This means a very close
relation between the multi-particle transfer matrices which determine the finite size spectrum.
Using the Bethe–Yang description of multi-particle levels (valid when neglecting corrections
exponentially decaying with the volume), the transfer matrix eigenvalues determining the
states in the sectors Hr with r = 1, . . . , k − 1 must be exactly identical. Exact matching
of the spectra in these sectors, however, places further constraints on the transfer matrix
eigenvalues, since they enter the thermodynamic Bethe ansatz equations which give an exact
description of the finite size spectrum. For the spectra of the two models to agree in all sectors
but one, all the eigenvalues (including also those corresponding to states in Hk) must be
nontrivially related. For m = 6 the eigenvalues of the two-particle transfer matrix are given in
equations (A.1) and (A.2) and it is obvious that only two of them are functionally different

�
(+)
1 (θ) = �

(−)
1 (θ), �

(+)
2 (θ) = �

(−)
4 (θ)

for either sign of the coupling. All the other eigenvalues can be expressed as the two
functionally different ones multiplied by constant phase factors which correspond to twisted
boundary conditions on the kinks. The allowed values of the twist depends on whether
we consider the high-temperature

(
A(1,2)+

m

)
or low-temperature phase

(
A(1,2)−

m

)
, which is a

characteristic feature of low/high temperature (Kramers–Vannier) duality. This duality is
well known in the case m = 4 (tricritical Ising) but it appears to be a more general feature of
all the models A(1,2)±

m with m even.

3.3. The kink spectrum for �2,1 perturbations

This case can be obtained from that of �1,2 perturbations by simply transposing the Kac
table or, equivalently, exchanging the two relative prime numbers p, p′ labeling the minimal
models (which for unitary models satisfy |p − p′| = 1) [19, 24]. For the models A(2,1)±

m

(p = m,p′ = m + 1) the quantum group has the parameter

q = eπ i m
m+1 . (3.18)

In this case RSOS restriction dictates that jmax = (m − 1)/2 and so the adjacency graphs are
the same as those for the models A(1,2)±

m+1 . This is in agreement with the LG position (2.6) of the
fields �1,2 and �2,1. As a result, �2,1 perturbations are invariant under changing the sign of
the couplings only when m is even, while for m odd the transformation λ → −λ corresponds
to a change in the vacuum structure analogous to the case of A(1,2)±

m when m is even: �2,1 is
in fact odd under the Z2 spin symmetry when m is even (the theory is then independent of the
sign of its coupling), while Z2 is a even field when m is odd (and the theories with λ > 0 and
λ < 0 are related by duality). For the degenerate vacua, in this case we have the following
labels:

• when m is even, both for λ > 0 and λ < 0 their number is m/2 and

a = 1

2
,

3

2
, . . . ,

m − 1

2
, λ > 0

10
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1
2

(a) (b)

0 1

Figure 3. The two phases of the Ising model: (a) T > Tc (A(2,1)+
3 ) and (b) T < Tc (A(2,1)−

3 ).

a = 0, 1, . . . ,
m − 2

2
, λ < 0

• when m is odd, their number is (m − 1)/2 for λ > 0, and (m + 1)/2 for λ < 0, with

a = 1

2
,

3

2
, . . . ,

m − 2

2
, λ > 0

a = 0, 1, . . . ,
m − 1

2
, λ < 0

All the considerations about duality in the previous section carry over to the �2,1 case;
the only difference is that the roles of even and odd m models are interchanged, and nontrivial
duality manifests itself for models with m odd.

As an example, let us consider the simplest case m = 3, which corresponds to the thermal
perturbation of the Ising model. The relevant adjacency graphs are shown in figure 3 and they
are in complete agreement with the fact that in the high-temperature phase the Ising model has
a single ground state supporting a bosonic particle with S = −1, while in the low-temperature
phase there are two vacua interpolated by a kink doublet corresponding to a Majorana fermion.

4. Non-integrable perturbations

We now show how the picture presented in section 3 changes when we consider non-integrable
perturbations of minimal models obtained by adding two perturbing operators. Our arguments
involve form factor perturbation theory developed in [4, 11].

4.1. Perturbing with �1,3 and �1,2

Consider the theory given by the action

A(1)
m = A(CFT)

m + λ1

∫
dz dz̄�1,3(z, z̄) + μ1

∫
dz dz̄�1,2(z, z̄),

characterized by the dimensionless coupling constant combination χ1 = λ1μ
−(1−h1,3)/(1−h1,2)

1 .
This theory has been originally analyzed in [9]. As we are going to show below, for generic
values of χ1, the kink spectrum of this theory is essentially that inherited by the A(1,2)±

m theory,
with a discontinuity in the spectrum that occurs only for χ1 → ∓∞. Namely, in the plane of
the couplings λ1 and μ1 (see figure 5), the numbers of degenerate vacua present in the half-
planes on the right- and left-hand sides of the vertical axis are generically equal to those of the
A(1,2)±

m theory: if m is odd, there are (m − 1)/2 vacua both in the right and left half-planes,
while if m is even, there are (m − 2)/2 vacua in the half-plane on the left side and m/2 in the
half-plane on the right side. In the former case, the two theories are identical, while in the
latter case they are related by duality. A different vacuum structure is only present in the limits
χ1 → ∓∞: (i) when χ1 → −∞, there is a discontinuous jump in the number of vacua, that

11
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Figure 4. (a) �1,2 perturbation of the A(1,3)−
m theory when m is even and (b) when m is odd.

becomes equal to (m − 1), and for this reason χ1 = −∞ corresponds to a first-order phase
transition; (ii) when χ1 → +∞, all vacua merge together, bringing the system to a massless
phase, corresponding to the cross-over from the minimal models Mm → Mm−1.

The scenario discussed above can be inferred by studying the two perturbative regimes
that can be approached by the form factor perturbation theory: χ1 → −∞ and χ1 → 0. They
are discussed separately below.

4.1.1. A(1)
m as the �1,2 perturbation of A(1,3)−

m . For λ1 < 0 and μ1 = 0 the theory
is identical to the massive A(1,3)−

m model, which has (m − 1) degenerate vacua |a〉 with
a = 0, 1/2, . . . , m/2 − 1. In the vicinity of χ1 → −∞, using the first-order perturbation
theory in μ1, the energy density of these vacua changes by the amount

δEa = μ1〈a|�1,2|a〉(1,3)−,

where the upper index indicates the model in which the matrix element is evaluated. The exact
vacuum expectation values of primary fields were conjectured in [24]

A(1,3)−
m : 〈a|�k,l|a〉(1,3)− = sin

(
π(2a+1)

m
((m + 1)k − ml)

)
sin π(2a+1)

m

Fm
k,l(λ1), (4.1)

where the function Fm
k,l is reported in appendix B. In particular

〈a|�1,2|a〉(1,3)− = (−1)2aFm
1,2(λ1).

So, the vacua with integer a receive the same shift, while those with half-integer a are
shifted by just the opposite amount. This supports the claim that, depending on the sign
of the coupling, the perturbation �1,2 favors either the integer or the half-integer vacua (see
figure 4). The perturbed theory nearby the negative vertical axis has therefore a new set
of stable vacua (whose number coincides with the corresponding A(1,2)±

m theory), while the
remaining original ones become false vacua.

Hence, in the perturbed theory the original kinks of A(1,3)−
m disappear from the spectrum

and they get confined. To determine the new spectrum of excitations, note that the perturbed
theory has now a new set of degenerate vacua, corresponding either to integer of half-integer
of a, depending on the sign of μ1. Their number is either (m − 1)/2 if m is odd, or m/2 if m
is even: in both case it coincides with the number of vacua of the A(1,2)±

m theory. These vacua
are connected by a new set of kinks K ′

a,a±1 that can be considered as bound states of original
kinks of A(1,3)−

m [9], of the form

K ′
a,a±1 ∼ Ka,a± 1

2
Ka± 1

2 ,a±1.

If M denotes the mass of the original kinks, at the lowest order in μ1 the mass of the new kink
is M ′ � 2M . As we are going to show, this interpretation of the kink K ′ as a bound states

12
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of the original kinks K follows from form factor perturbation theory. Using the theory of
superselection sectors presented in [14], the Hilbert space (2.7) can be identified in fact with
the sector of zero topological charge: periodic boundary conditions require that the multi-kink
states

|Ka1a2(θ1)Ka2a3(θ2) · · · Kanan+1(θn)〉
contained in that space satisfy a1 = an+1. The operators that create topologically charged
sectors are nonlocal and they become chiral in the conformal limit. For the matrix elements
of the Hamiltonian (2.8) to be well defined, they must be local with respect to the interaction
potential, which is �1,3 for the model A(1,3)−

m . The algebra of these operators is generated
by chiral vertex operators ϕ2,1 and ϕ̄2,1, which can be considered as the ultraviolet limit of
one-kink creation operators for the right/left movers, respectively. More precisely, these can
be identified the limits of the interpolating field8 for the appropriate kink states when the
off-critical coupling λ1 is taken to zero.

Comparing with subsection 2.1, it is obvious that the fusion rules of the operators ϕk,1

(or equivalently ϕ̄k,1) are exactly identical to the tensor product decomposition (3.4) of the
quantum group representations truncated by the RSOS restriction, with k = 2a + 1 giving the
relation to the quantum group representation labeled by a. Under this identification ϕ2,1 and
ϕ̄2,1 transform in the doublet representation just as the elementary kinks do.

The operators ϕ2,1 and ϕ̄2,1 are, however, non-local with respect to the non-integrable
perturbation �1,2 and, following an argument presented in [11], this results in an infinite mass
correction at first order of form factor perturbation theory in μ. This also means that the kink
excitations corresponding to these operators are confined in the non-integrable theory. For
two-kink states, however, the operator products

ϕ2,1ϕ2,1 ∼ I + ϕ3,1, ϕ̄2,1ϕ̄2,1 ∼ I + ϕ̄3,1, ϕ2,1ϕ̄2,1 ∼ �2,1 (4.2)

only contain operators that are local with respect to �1,2 and therefore two-kink bound states
(either topologically charged or neutral) can survive the perturbation.

In addition to the new set of kinks identified above, the perturbed theory has also neutral
particles, while the unperturbed integrable model A(1,3)−

m has none. In fact, the unbalance
of the next-neighbor vacua of the original theory gives rise to a linear confinement potential
between the kink and anti-kink of the original theory, with the consequent collapse of this pair
into a string of bound states [4, 5, 7, 11, 26]. The tower of neutral bound states is the same
for every new stable vacua of the perturbed theory. An estimate of their mass mk comes from
semi-classical considerations: called M the mass of the kink of the unperturbed A(1,3)−

m theory
and F ≡ μ1F

m
1,2(λ), one has [26]

mk = (
2 + F 2/3γ

2/3
k

)
M, (4.3)

where γk are the positive solutions of

J 1
3

(
1
3γk

)
+ J− 1

3

(
1
3γk

) = 0,

with Jν(x) being the Bessel function of order ν. Not all of these particles are stable: the
stable ones have to satisfy the condition mk < 2m1 while those with mk > 2m1, for the non-
integrability of the theory, decay in the lower mass channels. The number of stable particles
decreases by increasing the coupling μ1 and when m1 reaches the threshold of 2M ′ (where
M ′ is the mass of the kink of the perturbed theory) no neutral particles remain in the spectrum
of the A(1)

m theory.

8 Note that according to the standard formulation of scattering theory the interpolating field is not unique, since the
only condition it must satisfy is that it has a nonvanishing matrix element between the vacuum and the appropriate
one-particle state. In fact, any descendant from the conformal family of the above vertex operators would do as well.

13



J. Phys. A: Math. Theor. 42 (2009) 304022 G Mussardo and G Takács

Figure 5. Evolution of the vacua structure of the A(1)
m theory in the plane of the couplings. This

example refers to m = 8.

4.1.2. A(1)
m as the �1,3 perturbation of A(1,2)±

m . Let us now consider the theory in the limit
χ1 → 0, where �1,3 can be regarded as the non-integrable perturbation added to the A(1,2)±

m

models. Unlike the other limit χ1 → −∞, in this case the kink excitations of A(1,2)±
m survive

the perturbation and therefore they are present also for λ 
= 0. In fact, using the general
formula of the vacuum expectation values [24]

A(1,2)±
m : 〈a|�k,l|a〉(1,2) = sin

(
π(2a+1)

m
((m + 1)k − ml)

)
sin π(2a+1)

m

Gm
k,l(μ1) (4.4)

(where x = (m + 1)k − ml) with the function Gm
k,l given in appendix B, for the vacuum

expectation value of �1,3 we have

〈a|�1,3|a〉(1,2) = −Gm
1,3(μ1).

Hence, all the vacua of A(1,2)±
m are shifted by the same amount and their degeneracy is not

broken by the perturbation. In addition, extending the considerations of the previous subsection
for the �1,2 perturbations, the ultraviolet operators that creates the kinks are identified with
ϕ3,1 and ϕ̄3,1 (in accordance with subsection 2.2, these operators indeed correspond to the
spin-1 representation of the quantum group). Both of them are local with respect to �1,3, so
that the kinks of A(1,2)±

m survive the �1,3 perturbation and, as shown by the first two fusions
in (4.2), they can indeed be considered as bound states of two A(1,3)−

m kinks.
The above conclusions are also supported by considering the block structure of the

perturbing Hamiltonian (2.8). The fusion rules operators of the operators �1,2 and �1,3 imply
that the Hamiltonian still respects the block structure given in equations (3.15) and (3.16).
Therefore the vacuum structure is expected to coincide with that of the λ = 0 theory, which
is indeed what we found. These results are also consistent with the recent findings of [8] in
which the case of the tricritical Ising model (m = 4) was considered.

The evolution of the effective potential of the theory A(1)
m is summarized in figure 5, where

the coupling constants μ1 and λ1 are on the horizontal and on the vertical axis, respectively.
Note that moving from the horizontal axis toward the upper half-plane, one expects that the

14



J. Phys. A: Math. Theor. 42 (2009) 304022 G Mussardo and G Takács

heights of the maxima of the potential decrease so that, reaching the positive vertical there is
a coalescence of all vacua, leading to a massless flow to the conformal model Mm−1.

4.2. Perturbing with �1,3 and �2,1

The theory

A(2)
m = A(CFT)

m + λ2

∫
dz dz̄�1,3(z, z̄) + μ2

∫
dz dz̄�2,1(z, z̄) (4.5)

is characterized by the dimensionless combination of the coupling constants

χ2 = λ2μ
−(1−h1,3)/(1−h2,1)

2 .

As we are going to argue, for generic values of χ2, the model has either one vacuum (for m
even) or two degenerate vacua (for m odd). In the plane of the couplings λ2 and μ2, there are
however certain lines of discontinuities: they correspond either to the values χ2 → ∓∞ or
χ2 → 0±. Concerning the first limits χ2 → ∓∞, the situation is as in the previous section:
χ2 → −∞ corresponds to the first-order phase transition of the A(1,3)−

m theory, where there are
(m−1) vacua, while χ2 → +∞ corresponds to the massless flow Mm → Mm−1. The vacuum
structure of the two other limits χ2 → 0∓ are instead described by the M(2,1)±

m theories that,
for m even, both have m/2 vacua, whereas for m odd, have (m−1)/2 (χ2 → 0+) and (m+1)/2
(χ2 → 0−) vacua, respectively. These limits describe then first-order phase transitions of the
model in equation (4.5).

Let us see how this scenario emerges by considering the evolution of the vacuum structure
of the theory in the two perturbative limits χ2 → −∞ and χ2 → 0±.

4.2.1. A(2)
m as the �2,1 perturbation of A(1,3)−

m . Considering the model as a perturbation of
A(1,3)−

m (i.e. in the vicinity of χ2 = −∞), the shifts of the energy of the vacua are ruled by the
expectation values

〈a|�2,1|a〉(1,3) = (−1)2a+12 cos
π(2a + 1)

m
Fm

2,1(λ2), (4.6)

where

a = 0,
1

2
, . . . , jmax, jmax = m − 2

2
.

The expression of Fm
2,1 can be found in appendix B. There are two different possibilities

depending on the parity of m.

• When m is even, the vacuum degeneracy is completely lifted (the vacuum energy
contributions are all different), so that there is always a single vacuum left after switching
on μ. In agreement with this, there are no topologically charged operators in this case
that are local with respect to both perturbations, so all the original kinks are confined.
The evolution of the vacua in this case is shown in figure 6.

• When m is odd, for the symmetry

〈jmax − a|�2,1|jmax − a〉(1,3) = 〈a|�2,1|a〉(1,3)

the shifts of the vacua come in pairs but are otherwise nondegenerate. As a result, whatever
sign is chosen for the coupling μ, there are always two vacua left and all the others are
shifted differently. Depending on the sign of the �2,1 coupling μ, the two vacua are either
the pair a = 0 and a = jmax or the pair a = 1

2 and a = jmax − 1
2 .

This can also be understood by considering the allowed topological charges. �1,3 is local
with respect to the operators ϕk,1, while �2,1 is local with respect to ϕ1,2l+1. For odd m,
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Figure 6. Evolution of the vacua structure of the A(2)
m theory in the plane of the couplings when

m is even. This example refers to m = 8.

the operator ϕm−1,1 ≡ ϕ1,m is in the intersection of these two families, so the topological
sector created by it is still allowed. Therefore one expects a single kink doublet to be
present in the spectrum, which interpolates between the two remaining vacua. It is easy
to check that the allowed kink has the correct quantum numbers. Using the quantum
group picture for �1,3, the operator ϕm−1,1 transforms in the spin jmax representation. The
RSOS truncated tensor product rules (3.4) give the relations

jmax ⊗ 0 = jmax, jmax ⊗ jmax = 0

jmax ⊗ 1
2 = jmax − 1

2 , jmax ⊗ jmax − 1
2 = 1

2

(4.7)

so the charged sectors created by ϕm−1,1 do indeed interpolate between the remaining
two vacua. The simplest example is the Ising model m = 3 where the two operators
are eventually identical �1,3 = �2,1, and therefore the �2,1 perturbation just changes the
scale of the A(1,3)−

3 but otherwise leaves the kink structure intact.

4.2.2. A(2)
m as the �1,3 perturbation of A(2,1)±

m . We can also consider the model (4.5) as a
�1,3 perturbation of the A(2,1)±

m models and studying it in the vicinity of χ2 → 0. The exact
vacuum expectation values conjectured in [24] have the form

〈a|�k,l|a〉(2,1) = sin
(

π(2a+1)

m+1 ((m + 1)k − ml)
)

sin π(2a+1)

m+1

Hm
k,l(μ2),

where the function Hm
k,l can be found in appendix B. Specializing the above formula to �1,3

and simplifying it, we have

〈a|�1,3|a〉(2,1) = sin
( 3π(2a+1)

m+1

)
sin π(2a+1)

m+1

Hm
1,3(μ2). (4.8)

Let us assume that the normalization of �1,3 is fixed so that Hm
1,3(μ2) > 0. Hence, the stable

vacua are given by the maxima of the expression (4.8) for λ < 0, and by the minima for λ > 0.
In order to apply the above formula, one needs to refer to the proper values of a for the vacua
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discussed in section 2. In A(2,1)−
m the index a runs through integer, while in A(2,1)+

m it runs
through half-integer values, so it is necessary to consider these subsets separately. It is also
important to distinguish whether m is even or odd.

• For even m, expression (4.8) has a single maximum for both the two subsets of integers
and half-integers, lying at a = 0 for the integer and at a = (m − 1)/2 for the half-integer
vacua. The maximum has equal magnitude in both cases. Hence, there is always a single
vacuum state in the theory if we approach the horizontal axis from below, independently
of whether this is the positive or the negative horizontal axis.

There is also a single minimum: for the half-integer vacua, this is localized at a = m/4
(if m = 2(2k+1)), or at a = (m−2)/4 (if m = 2(2k)); for the integer vacua, it is localized
at a = (m + 4)/4 (if m = 2(2k)) and at a = (m + 2)/4 (if m = 2(2k + 1)). Hence, there
is also a single vacuum state if we approach the negative or the positive horizontal axis
from above, although it changes position after crossing the horizontal axis. Hence, for m
even, we refer to figure 6 for the evolution of the vacuum states.

• For odd m, the maxima lie at

a = 0 and a = m − 1

2
for a integer

a = 1

2
and a = m − 2

2
for a half-integer.

Approaching the horizontal axis from below, the theory has two vacua: these are nothing
else but the two vacua that were selected out by the perturbation that moves the theory
away from the negative vertical axis and that change their shape moving toward the
horizontal axis.

For the minima, when m is odd, the situation is more articulated, as shown below: in
fact, if m+1

2 is odd, the minima are at

a = m − 1

4
for a integer

a = m − 3

4
and a = m + 1

4
for a half-integer

while, if m+1
2 is even, the minima are at

a = m − 3

4
and a = m + 1

4
for a integer

a = m − 1

4
for a half-integer.

In the first case (m+1
2 odd), moving up from the horizontal axis, there are two vacua in the

first quadrant and one vacuum in the third quadrant. In the second case (m+1
2 even), the

situation is reversed: there is one vacuum in the first quadrant and two vacua in the third
quadrant.

To understand the above features, let us examine the adjacency rules in the quantum group
picture appropriate to �2,1. Now

jmax = m − 1

2
because q is given by (3.18). The spin of the intertwiner ϕ1,m is exactly jmax and the relevant
truncated fusion rules can be written in the form (4.7), which is consistent with the identification
of the vacua. Note that the above positions of the minima can be written as

a = m − 1

4
= jmax

2
or a = jmax ± 1

2
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Figure 7. Evolution of the vacua structure of the A(2)
m theory in the plane of the couplings when

m is odd. This example refers to m = 7.

(according to the subset of vacuum labels a considered) and so depending on the sign of �2,1

coupling μ there are either one or two vacua. It remains to check whether these are consistent
with the existence of the topological charge carried by ϕ1,m. Using the truncated quantum
group tensor product rules (3.4)

jmax ⊗ jmax

2
= jmax

2

jmax ⊗ jmax ± 1

2
= jmax ∓ 1

2

so the topological charge of ϕ1,m can be supported by the vacua left after switching on λ > 0
for both even/odd values of m.

We can also consider the action of the perturbing operators �1,3 and �2,1 on the Hilbert
space (2.7). For an odd value of m = 2k + 1 it turns out that the Hilbert space can be split into
two sectors as follows:

H+ =
k⊕

r=1

⊕
sodd

Vr,s ⊗ V̄r,s H− =
k⊕

r=1

⊕
seven

Vr,s ⊗ V̄r,s

while no such splitting can be done for m even, which gives additional support to our
conclusions.

4.3. Perturbing with �1,2 and �2,1

The action is

A(3)
m = A(CFT)

m − λ3

∫
dz dz̄�1,2(z, z̄) − μ3

∫
dz dz̄�2,1(z, z̄). (4.9)

18



J. Phys. A: Math. Theor. 42 (2009) 304022 G Mussardo and G Takács

Let us consider the model as a perturbation of A(1,2)±
m with the operator �2,1 (swapping the

roles of the two fields only means interchanging the two integers m and m + 1 characterizing
the minimal model). From equation (4.4) we obtain

〈a|�2,1|a〉(1,2) = 2(−1)(2a+1) cos
π(2a + 1)

m
Gm

2,1(λ3).

For m even, all these values are nondegenerate; for m odd they are invariant under the symmetry

a → jmax − a where jmax = m − 2

2
but it interchanges integer with half-integer vacua, which cannot be simultaneously present.
Therefore the vacuum degeneracy is completely lifted. This is also consistent with the fact that
there is no topologically charged operator that can be simultaneously local to both perturbing
fields. Furthermore, the fusion rules of the two fields are such that there is no subdivision of
the Hilbert space (2.7) (apart from that corresponding to the conformal spin) which makes
the Hamiltonian (2.8) block diagonal. Therefore all the kinks are confined and only scalar
particles are present in the spectrum.

5. Application to the two-frequency sine-Gordon model

An interesting limit of the models considered so far is obtained when m → ∞. In this
limit, the dimension of operator �1,3 tends to 1 and, from the model A(1,3)−

m , one obtains the
sine-Gordon model∫

dz dz̄

(
1

2
∂μφ∂μφ + λ cos βφ

)

at the Kosterlitz–Thouless point β = √
8π , where it describes an asymptotically free field

theory.
Considering now the operators �1,2 and �2,1, their dimensions tend to 1/4, and therefore

in the limit they can be identified with the operators

cos 1
2βφ and sin 1

2βφ.

For a more precise description, it is necessary to select the Z2 symmetry in sine-Gordon theory
which has to be identified with the Z2 transformation of the minimal model. Our convention
is to take

Z2 : φ → −φ. (5.1)

Note, however, that there are infinitely many other choices related to the above one by the
periodicity of the sine-Gordon potential under

φ → φ +
2β

π
,

each of them corresponding to a convention of how to deal with the zero mode of the bosonic
field φ. Within our choice (5.1), the even operators (�1,2/�2,1 for m even/odd, respectively)
are identified with cos βφ/2 in the limit, while the odd ones (�2,1/�1,2 for m even/odd,
respectively) are identified with sin βφ/2. Hence, we expect that the limiting models A(1)

m

and A(2)
m have to do with the non-integrable double sine-Gordon model investigated in [11],

whereas the model A(3)
m with a pure sine-Gordon model but at β2 = 2π . Let us investigate in

more detail the emergence of these identifications.
According to our previous results, perturbing A(1,3)−

m with �1,2 lifts every second vacuum
state. Examining the effective potential of this theory, it is easy to see that the same effect
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Figure 8. Original sine-Gordon potential (continuous line) and shifted potential (dashed line)
under deformation.

happens in the limit m → ∞, independently of whether m is even or odd, i.e. whether the
limiting operator is cosine or sine. This also means that the same must be true for �2,1. But
there is an apparent obstacle to this conclusion, which comes from the behavior at finite m of
the model A(2)

m , where there is the simultaneous presence of the fields �1,3 and �2,1: these
models, in fact, have only one or two vacua left (depending on the parity of m). How to handle
this paradox? The solution is in the limiting values of the vacuum expectation values: note
that the vacuum shifts given in equation (4.6) satisfy

δEa ∝ (−1)2a+1 cos
π(2a + 1)

m
−→
m→∞(−1)2a+1

and so they become equal in magnitude while alternating in sign, consistent with the limiting
double sine-Gordon picture. A further check that this is indeed the solution of the paradox is
to consider the picture in which the perturbing operator is �1,3 added to the integrable theory
defined by �2,1: in this case, from the limiting sine-Gordon theory, we expect that none of the
vacua permitted by �2,1 will be lifted in the limit. According to equation (4.8) the vacuum
shifts are

δEa ∝ sin
( 3π(2a+1)

m+1

)
sin π(2a+1)

m+1

and the right-hand side expression tends to the constant value 3 in the limit, i.e. to a uniform
shift of all vacua that correctly does not lift any of them!

For the model A(3)
m the situation is even more interesting. The sine-Gordon potential in

this case is expected to be

λ1 cos 1
2βφ + λ2 sin 1

2βφ = λ cos 1
2β(φ − φ0)

with

λ =
√

λ2
1 + λ2

2, tan
1

2
βφ0 = λ2

λ1
.

If this conclusion is correct, it means that the degeneracy of the original vacua should not
be lifted by adding the other perturbation: the only effect should simply be a translation of
the original effective potential by the amount φ0 (see figure 8). This picture seems to be in
contrast with that coming from the perturbed minimal models, where we saw that the double
perturbation selected instead a unique ground state. The solution of this paradox is once again
in the limiting values of the vacuum expectation values; equation (4.3) gives

δEa ∝ (−1)2a+1 cos
π(2a + 1)

m
−→
m→∞(−1)2a+1
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which indicates that in the limit m → ∞, the vacuum energy shifts become equal in magnitude,
but alternating in sign. But we must remember that in the models A(1,2)±

m only the integer/half-
integer vacua are present (depending on the sign of the coupling), and so we obtain consistency
with the sine-Gordon picture as before. Furthermore, since in the limiting theory the effect of
the perturbation (apart from redefining the coupling and thus also the mass scale) is simply
a uniform displacement of the vacua by φ0, the original kinks must be present also in the
perturbed theory, without feeling any confinement. This can be easily proved. From the point
of view of the minimal model, note that the chiral operators ϕ2k+1,1 creating the topologically
charged sectors of the theory A(1,2)±

m become local with respect to the perturbation �2,1 in the
limit m → ∞, and this agrees with the fact that all the solitonic excitations survive.

Finally we remark that interchanging the roles of the two fields �1,2 and �2,1, the above
considerations can be applied again simply by swapping the roles of the minimal model indices
m and m + 1.

6. Conclusions

In this paper, using simple arguments based on form factor perturbation theory, exact
expressions of vacuum expectation values and truncated conformal space approach, we
establish the evolution of the effective potential in certain non-integrable deformations of
minimal models. For small values of the coupling involved, the analysis is both qualitative
and quantitative, while for intermediate values of the couplings, it only provides a qualitative
scenario of the corresponding field theory. Nevertheless this information is useful because it
correctly identifies the set of stable and unstable vacua, together with the nature of the massive
excitations above them: these data are important as the starting point of a more refined analysis
of these theories. We have also investigated the interesting scenario that emerges in the limit
m → ∞, with a relevant role played by the sine-Gordon model and deformations thereof.
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Appendix A. The models A(1↪2)±
6

The mass M1 of fundamental kink can be expressed as a function of the coupling [27]

λ = 0.10390339 . . . × M
12/7
1 .

This relation can be used to express the Hamiltonian (2.10) in terms of dimensionless energy
and volume variables

e = E/M1, l = M1L.

There is also an excited kink with mass

M2 = 2M1 sin

(
π

6
+

ξ

2

)
= 1.93185 . . . × M1, ξ = π

2
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 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25

two-particle levels
m1
m2

l

e(l)

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25

two-particle levels
m1
m2
M1
M2

l

e(l)

Figure A1. The spectrum of spin-zero states in sectors H1 and H2 for the models A(1,2)±
6 . The

number of states kept are 2412 and 5987, corresponding to a cutoff at level 20 for both sectors.
(a) Sector H1 of A(1,2)±

6 and (b) sector H2 of A(1,2)±
6 .

and two breathers with masses

m1 = 2M1 sin
ξ

2
= 1.4141 . . . × M1,

m2 = 4M1 sin

(
π

6
+

ξ

2

)
sin

ξ

2
= 2.73205 . . . × M1.

The spectrum can be evaluated using the truncated conformal approach [12] and the results
are presented in the figures A1 and A2. We indicated the predicted masses in the plots; they
are reproduced up to deviations of order 10−3.

To distinguish between the two scattering theories, one based on the integer and the other
on the half-integer vacua, it is necessary to examine the two-particle levels. They can be
predicted from the exact S matrix using the transfer matrix formalism developed in [28] (see
also [20] for more details). The two-kink states (of zero total momentum) take the form

|Kab(θ)Kbc(−θ)〉
with periodic boundary conditions demanding that a = c. For integer vacua there are five
such states allowed by the adjacency conditions

|K01(θ)K10(−θ)〉, |K10(θ)K01(−θ)〉, |K11(θ)K11(−θ)〉,
|K12(θ)K21(−θ)〉, |K21(θ)K12(−θ)〉

while for half-integer vacua we find four states

|K 1
2

1
2
(θ)K 1

2
1
2
(−θ)〉, |K 1

2
3
2
(θ)K 3

2
1
2
(−θ)〉,

|K 3
2

1
2
(θ)K 1

2
3
2
(−θ)〉, |K 3

2
3
2
(θ)K 3

2
3
2
(−θ)〉.

The corresponding transfer matrices have the following eigenvalues:

�
(−)
k (θ) = ei(2k+1) π

3 sinh (2θ) sinh
(

2θ − i
π

3

)
σ(θ), k = 1, 2, 3

�
(−)
4 (θ) = −�

(−)

5 (θ) = 1

2
sinh (2θ)

√
1 + 2 cosh 4θσ (θ)

(A.1)

for the integer case, and

�
(+)
1 (θ) = �

(−)
1 (θ), �

(+)
2 (θ) = �

(−)
4 (θ), �

(+)
3 (θ) = �

(−)

5 (θ) = −�
(−)
4 (θ)

�
(+)
4 (θ) = −�

(−)
1 (θ)

(A.2)
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Figure A2. The spectrum of spin-zero states in sector H3 for the models A(1,2)±
6 . The number of

states kept is 3714, corresponding to a cutoff at level 20. (a) Sector H3 of A(1,2)+
6 and (b) sector

H3 of A(1,2)−
6 .

for the half-integer case, where

σ(θ) =
exp

(−2i
∫∞

0
dk
k

sin kθ
sinh πk

3 cosh
(

π
6 − ξ

2

)
k

cosh πk
2 sinh ξk

2

)
sinh π

ξ
(θ − iπ) sinh π

ξ

(
θ − 2iπ

3

)
Two-particle levels can be obtained by solving the Bethe–Yang equation

l sinh θ + �(2θ) = 2nπ,

where � is an eigenvalue of the transfer matrix.
Let us first analyze the data in figure A1. The sectors H1 and H2 are independent of the

sign of coupling. The energy levels were normalized by subtracting the ground state of H1,
and it is apparent that both sectors contain a vacuum state. In addition, there is a one-kink
state in H2, corresponding to a link in the adjacency diagram that connects a vacuum with
itself. The two-particle states of these sectors can be explained by both the integer and the
half-integer transfer matrix: the ones in H1 are described by the eigenvalue �

(−)
1 = �

(+)
1 ,

while those in H2 correspond to �
(+)
2 = �

(−)
4 and �

(+)
3 = �

(−)

5 . We remark that the apparently
incomplete two-particle level in sector H1 corresponds to a would-be second breather bound
state of fundamental kinks which is exactly on threshold in infinite volume, but becomes
bound by finite size effects exponentially decaying in the volume. At a certain critical volume
its energy crosses the threshold 2M1 again, and for smaller values of l it can be described as a
two-kink state which is shown as the incomplete continuous line.

From figure A2 it is obvious that the spectrum of sector H3 does depend on the sign of
the coupling. For λ > 0 (model A(1,2)+

6 ) there is no vacuum state in this sector, but we find an
additional neutral kink state. This is in accordance with the adjacency diagram for half-integer
vacua: we expect only two vacua 1/2 and 3/2, and both of them should have neutral kink
excitations over them. In accordance with this that the two-particle levels in this sector turn out
to correspond to the eigenvalue �

(+)
4 which is only present for the half-integer transfer matrix.

On the other hand, for λ < 0 (model A(1,2)−
6 ) there is an additional vacuum, but not additional

neutral kink state, which fits well with the expectation that there must be three vacua 0, 1 and
2, but only 1 can support neutral kink excitations. In addition, the two-particle levels are now
described by the eigenvalues �

(−)
2 and �

(−)
3 .
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One can calculate the lowest energy level in H3 using perturbation theory. To first order,
the result is

E±(L) = 2π

L

(
2h33 − c

12
± λL2−2h1,2

(2π)1−2h1,2
C

(3,3)

(1,2)(3,3) + O(λ2)

)
.

Using the normalization condition (3.12) we see that it receives a large (perturbative) correction
which is positive for A(1,2)+

6 and negative for A(1,2)−
6 . According to the arguments presented in

section 2.2 (in the paragraph preceding equation (3.16)), this indicates that the difference
E+(L) − E−(L) has a finite positive limit when L → ∞. Since it is expected that
exactly one of these states is a vacuum state, while the other one has a finite gap over
the vacuum, it follows that A(1,2)−

6 has three ground states while A(1,2)+
6 only has two, which is

consistent with the proposition made at the end of subsection 3.1. Indeed, the above argument
can be extended to the general case A(1,2)±

2k , which justifies the proposition at the end of
subsection 3.1.

Appendix B. Exact vacuum expectation values

In this appendix we collect for convenience the formulae for the exact vacuum expectation
values of primary fields in perturbed conformal field theories, derived in [24]. Hereafter

x ≡ (m + 1)k − ml.

B.1. Integrable theory A(1,3)−
m

In the case of the model A(1,3)−
m for the vacuum expectation values of the primary fields on the

various vacua we have

〈a|�k,l|a〉(1,3)− = sin
(

π(2a+1)

m
((m + 1)k − ml)

)
sin π(2a+1)

m

Fm
k,l(λ), (B.1)

where

Fm
k,l(λ) =

(
M

√
π�
(

m+3
2

)
2�
(

m
2

)
)2�k,l

Q1,3(x) (B.2)

with

Q1,3(η) = exp

{∫ ∞

0

dt

t

[
cosh(2t) sinh((η − 1)t) sinh((η + 1)t)

2 cosh(t) sinh(mt) sinh((1 + m)t)
− η2 − 1

2m(m + 1)
e−4t

]}
.

(B.3)

In the formula above

M = 2�
(

m
2

)
√

π�
(

m+1
2

)
⎡
⎣πλ(1 − m)(2m − 1)

(1 + m)2

√√√√�
(

1
m+1

)
�
(

1−2m
m+1

)
�
(

m
m+1

)
�
(

3m
m+1

)
⎤
⎦

1+m
4

(B.4)

is the mass of the kinks expressed in term of the coupling constant λ.
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B.2. Integrable theory A(1,2)
m

For the integrable model A(1,2)
m the vacuum expectation values of the primary fields on the

various vacua are

〈a|�k,l|a〉(1,2) = sin
(

π(2a+1)

m
((m + 1)k − ml)

)
sin π(2a+1)

m

Gm
k,l(λ), (B.5)

where

Gm
k,l(λ) =

(
M

π(m + 1)�
(

2m+2
3m+6

)
2

2
3

√
3�
(

1
3

)
�
(

m
3m+6

)
)2�k,l

Q1,2(x) (B.6)

with

Q1,2(η) = exp

{∫ ∞

0

dt

t

[
sinh((m + 2)t) sinh((η − 1)t) sinh((η + 1)t)

sinh(3(m + 2)t) sinh(2(m + 1)t) sinh(mt)

× (cosh(3(m + 2)t) + cosh((m + 4)t) − cosh((3m + 4)t) + cosh(mt) + 1)

− η2 − 1

2m(m + 1)
e−4t

]}
. (B.7)

In the formula above

M = 2
m+5
3m+6

√
3�
(

1
3

)
�
(

m
3m+6

)
π�
(

2m+2
3m+6

)
[

π2λ2�
(

3m+4
4m+4

)
�
(

1
2 + 1

m+1

)
�
(

m
4m+4

)
�
(

1
2 − 1

m+1

)
] m+1

3m+6

(B.8)

is the mass of the kinks expressed in terms of the coupling constant λ.

B.3. Integrable theory A(2,1)
m

In this integrable model the vacuum expectation values of the primary fields on the various
vacua are

〈a|�k,l|a〉(2,1) = sin
(

π(2a+1)

m+1 ((m + 1)k − ml)
)

sin π(2a+1)

m+1

Hm
k,l(λ), (B.9)

where

Hm
k,l(λ) =

(
M

πm�
(

2m
3m−3

)
2

2
3

√
3�
(

1
3

)
�
(

m+1
3m−3

)
)2�k,l

Q2,1 (x) (B.10)

with

Q2,1(η) = exp

{∫ ∞

0

dt

t

[
sinh((m − 1)t) sinh((η − 1)t) sinh((η + 1)t)

sinh(3(m − 1)t) sinh(2mt) sinh((m + 1)t)

× (cosh(3(m − 1)t) + cosh((m − 3)t) − cosh((3m − 1)t) + cosh((m + 1)t) + 1)

− η2 − 1

2m(m + 1)
e−4t

]}
. (B.11)

The mass of the kink, as a function of the coupling constant λ, is expressed by

M = 2
m−4
3m−3

√
3�
(

1
3

)
�
(

m+1
3m−3

)
π�
(

2m
3m−3

)
[

π2λ2�
(

3m−1
4m

)
�
(

1
2 − 1

m

)
�
(

m+1
4m

)
�
(

1
2 + 1

m

)
] m

3m−3

. (B.12)
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